If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49r^2+4=53
We move all terms to the left:
49r^2+4-(53)=0
We add all the numbers together, and all the variables
49r^2-49=0
a = 49; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·49·(-49)
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9604}=98$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-98}{2*49}=\frac{-98}{98} =-1 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+98}{2*49}=\frac{98}{98} =1 $
| 11b-b-2b+5b-2b=44 | | 1x+46=7x+16 | | (20t+5)+(15(t))=180 | | 46421391+h=8237 | | y+2/5y=0.68y | | 3+5.1=y | | x-8/7=2 | | 11b-b-2b+5b=44 | | 5=1.3(x-7) | | `90=20r` | | 5=1.3(x-7 | | 16x-8+10x-10=180 | | 18x-13x-3x-x=20 | | -x+12+9=21 | | y=-6+13 | | Y-0.32y=3/5y | | 6g-3g+6g=18 | | 5x-7=18+3x | | yyy=5.1 | | 4.5(2x+4)=4x+15+5x | | yyy=3 | | (20t+5)=(20t+5) | | 14=a/12 | | Y=200+10m | | 14=a12 | | 8/(x)=3/(0.16-x) | | 320=20x+200 | | 1/2k+2=55/6k | | 9v-9v+2v=12 | | 15x+19=8x+19 | | g(4)=25-3 | | 4m+3m+1=2m |